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Bias-Reduced Doubly Robust Estimation

%

Karel VERMEULEN and Stijn VANSTEELANDT

Over the past decade, doubly robust estimators have been proposed for a variety of target parameters in causal inference and missing data
models. These are asymptotically unbiased when at least one of two nuisance working models is correctly specified, regardless of which.
While their asymptotic distribution is not affected by the choice of root-n consistent estimators of the nuisance parameters indexing these
working models when all working models are correctly specified, this choice of estimators can have a dramatic impact under misspecification
of at least one working model. In this article, we will therefore propose a simple and generic estimation principle for the nuisance parameters
indexing each of the working models, which is designed to improve the performance of the doubly robust estimator of interest, relative
to the default use of maximum likelihood estimators for the nuisance parameters. The proposed approach locally minimizes the squared
first-order asymptotic bias of the doubly robust estimator under misspecification of both working models and results in doubly robust
estimators with easy-to-calculate asymptotic variance. It moreover improves the stability of the weights in those doubly robust estimators
which invoke inverse probability weighting. Simulation studies confirm the desirable finite-sample performance of the proposed estimators.

Supplementary materials for this article are available online.

KEY WORDS: Causal inference; Double robustness; Missing data; Nuisance parameters; Semiparametric estimation.

1. INTRODUCTION

Estimation of most statistical parameters requires postulation
of so-called nuisance working models: models not of primary
scientific interest, but needed to obtain a well-behaved estimator
of the target parameter in small to moderate sample sizes. For
instance, in studies where outcome data are incomplete in a way
that is explainable by measured covariates, estimation of the
mean outcome requires modeling the dependence of those co-
variates on either the outcome or missingness. In typical causal
inference problems, estimation of the exposure effect requires
modeling the dependence of measured confounders on either
the outcome or the exposure. A prevailing concern is that mis-
specification of those nuisance working models induces bias in
the estimator of the target parameter (Robins 1999).

In many missing data and causal inference models, the con-
cern for bias due to model misspecification can be lessened via
the use of doubly (or multiply) robust, abbreviated DR, esti-
mators. These consistently estimate the target parameter when
at least one of two (or multiple) nuisance working models is
correctly specified, regardless of which (Robins and Rotnitzky
2001). Since the seminal work by Scharfstein, Rotnitzky, and
Robins (1999a) and Robins and Rotnitzky (2001), a variety of
DR estimators have been developed. Bang and Robins (2005)
gave an overview of work on DR estimation of the parameters
indexing conditional mean models when the outcome data are
incomplete, and of marginal treatment effects in causal infer-
ence models. DR estimators have also been developed for, for
instance, statistical interaction parameters (Vansteelandt et al.
2008), controlled direct effects (Goetgeluk, Vansteelandt, and
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Goetghebeur 2008), natural direct and indirect effects in me-
diation analysis (Tchetgen Tchetgen and Shpitser 2012), in-
complete covariate problems (Tchetgen Tchetgen and Rotnitzky
2011), and instrumental variables analysis (Okui et al. 2012).
The appeal of DR estimators surpasses the defining property
of double protection against model misspecification. Their re-
liance on multiple nuisance working models, of which only one
must be correctly specified, makes them potential “compromise”
estimators amidst competing estimators that each rely on a sin-
gle, but different working model. For instance, in missing data
models, DR estimators form a compromise between imputation-
based estimators that rely on an imputation model for the in-
complete outcome, and inverse probability weighted estimators
that rely on a model for the probability of missingness; arguably,
they may therefore define the preferred analysis. Additionally,
many DR estimators are locally efficient within a broad class
of estimators. Because of this, their use has been advocated in
randomized trial analyses: by exploiting the known randomiza-
tion probabilities, they make it possible to increase power via
covariate adjustment without risking bias due to model misspec-
ification (Tsiatis et al. 2008; Moore and van der Laan 2009).
Estimation of the nuisance parameters indexing the working
models in DR estimators has long been ignored. Theoretical re-
sults show that the choice of nuisance parameter estimators has
no impact on the asymptotic variance of DR estimators when
both working models are correctly specified (Tsiatis 2006).
This has led to the default use of maximum likelihood esti-
mators. This standard practice has gradually started to change
when simulation studies by Kang and Schafer (2007a) cautioned
for potentially disastrous performance of certain DR estimators
(relative to simpler estimators) when both working models are
misspecified. The discussions of that article (Ridgeway and Mc-
Caffrey 2007; Robins et al. 2007; Tan 2007; Tsiatis and David-
ian 2007; Kang and Schafer 2007b) reveal that many different
DR estimators may exist for a given target parameter, all with
potentially very different behavior and properties under mis-
specification of at least one working model. In particular, when
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a DR estimator exists for a given target parameter, then infinitely
many can usually be constructed by varying the choice of nui-
sance parameter estimators. All resulting DR estimators have
the same asymptotic behavior under correct specification of all
working models, but a potentially very different behavior under
model misspecification.

Rubin and van der Laan (2008), Cao, Tsiatis, and David-
ian (2009), and Tsiatis, Davidian, and Cao (2011) developed
DR estimators in specific missing data models with desirable
efficiency properties when the missingness model is correctly
specified. In their development, which generalizes that of Tan
(2006), the nuisance parameters indexing the working model for
the incomplete outcome are estimated by directly minimizing
the variance of the DR estimator. The TMLE (targeted maxi-
mum likelihood estimation) procedure (van der Laan and Rose
2011) and the procedures of Tan (2010) and Rotnitzky et al.
(2012) guarantee DR estimators of the population mean that
fall within the parameter range, with the latter procedures also
having desirable efficiency properties. With the exception of
TMLE, all these proposals focus on improving the efficiency of
DR estimators under misspecification of the working model for
the full-data distribution (i.e., the dependence of outcome on co-
variates/confounders in missing data/causal inference models).
The collaborative TMLE (C-TMLE) procedure of van der Laan
and Gruber (2010), which is a further improvement upon the
TMLE procedure, additionally focuses on the estimation of the
missingness/exposure probabilities in a way that aims to prevent
large variance of the DR estimator.

In this article, as in a recent article by van der Laan (2014),
we take a different perspective by focusing on bias reduction
rather than variance reduction. This is motivated by the fact
that the bias of a DR estimator can get severely amplified un-
der misspecification of at least one working model and may
become especially severe under misspecification of both work-
ing models (Kang and Schafer 2007a; Vansteelandt, Bekaert,
and Claeskens 2012). In particular, in Section 3 we propose a
general estimating equation-based strategy, referred to as bias-
reduced DR estimation, which locally minimizes the squared
first-order asymptotic bias of the DR estimator in the direction
of the nuisance parameters under misspecification of both work-
ing models. Our proposal differs from van der Laan (2014) in
that it avoids bias approximations in view of the difficulty of
approximating bias (see later). Unlike most other proposals, it
focuses on the estimation of the nuisance parameters in all work-
ing models, is readily applicable to arbitrary DR estimators, can
be adapted to certain multiply robust estimators (see Section
5), and returns DR estimators with easy-to-calculate asymptotic
variance. Simulation studies in Section 4 and the analysis of an
observational study in Section 6 demonstrate that the proposed
estimator is competitive with existing alternatives.

2. DOUBLY ROBUST ESTIMATION

For pedagogic purposes, we first consider the estimation of
a population mean outcome in the presence of incomplete data.
While seemingly simple, this problem reveals fundamental chal-
lenges involving inverse probability weighting. Consider a study
design which intends to collect iid data {(Y;, X;),i = 1, ..., n},
with Y; the outcome and X; a set of auxiliary covariates for
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subject i. Estimation of the mean E(Y) is complicated by the fact
that Y; is not available for all individuals. Let R; denote the miss-
ingness indicator, which codes R; = 1 when Y; is observed and
R; = 0if Y; is missing. The observed data can then be described
as the random sample {Z; = (R;Y;, R;, X;),i = 1,...,n}. As-
sume that the covariates X; contain sufficient information to
explain missingness so that the missing at random (MAR) as-
sumption, Y; 1l R;|X; (Tsiatis 2006), holds. Throughout, for
some parameter A we use Aq to denote its (unknown) population
value; in particular, E(Y) = uo.

Robins, Rotnitzky, and Zhao (1994) showed that when out-
come data are missing, consistent estimation of wg requires
specification of at least one of the two following working mod-
els. The first is a working model for the probability of observ-
ing the data—referred to as the propensity score, abbreviated
PS, throughout: P(R = 1|X) = mp(X) = 7 (X; ), for which
we assume 7y(X) > 0 with probability one, where 7 (X;y)
is a known function, smooth in y and y, is an unknown p-
dimensional parameter; for example, a logistic regression model
n(X;y) = expit(y; + szX). This model is denoted .Z(y) =
{r(X;y) : y € RP}. The second is a working model for the con-
ditional mean outcome E(Y|X) = my(X) = m(X; By), where
m(X; B) is a known function, smooth in 8 and B is an un-
known g-dimensional parameter; for example, a linear model
m(X; B) = B1 + B3 X foracontinuous outcome Y. This model is
denoted .Z(B) = {m(X; B) : B € R?}. Scharfstein, Rotnitzky,
and Robins (1999a) showed that a DR estimator of g, with
E,(V)=n"'Y""_, Vi, can be obtained as

- RY

C e _R-—nX.p)
Apr(P, B) = E, {n(X, )

(X, 9)

for root-n consistent and asymptotically normal estimators p
and /} for the nuisance parameters y and B (Tsiatis 2006, chap.
3). This estimator is consistent for py under the union model
A (y) U . (B): as soon as one but not necessarily both work-
ing models are correctly specified. If the intersection model
A (y) N A (B) holds, that is, both working models are cor-
rectly specified, the DR estimator (1) is locally efficient (Tsiatis
2006) under model .#Z (p): it then has the smallest asymptotic
variance within the class of all estimators that are consistent and
asymptotically normal under .# (y ), provided that also .# () is
correctly specified. The proposition below, which follows from
standard results on M-estimation, gives the asymptotic distri-
bution of the DR estimator (1) in the special case where y and
ﬁ are solutions to estimating equations £, {U,(Z;p)} =0 and
E, {Up(Z; B)} = 0. The more general result when the estimat-
ing functions U,, and Ug involve both y and B is reported in
Appendix A of the online supplemental material.

m(X, B)}, (1)

Proposition 1. Define

RY
7(X;p)

R—n(X;»)

7.y, =
dZ;p, v, B) X0y

mX, ) —p (2

and denote y* = plim(§), B* = plim(B), that is, the probability
limits of estimators p and B which equal y and B, respectively,
when the working models are correctly specified, but not neces-
sarily otherwise. Under suitable regularity conditions (Robins,
Rotnitzky, and Zhao 1994, app. B), fipr(¥, B)is asymptotically



1026

linear with influence function (Tsiatis 2006)
(L 1o, ¥, B*) = ¢(Zs 110, ¥*, B)
0¢ v s _, [dU
—E{ay—T(Z;Mo,}' B )}E 1{ —r Ly >}U Z;y")

8¢ * * -

meaning [ipr(P, B) can be expanded as nl/z{ﬂDR(}?, /§) —
wot = n'2E{P(Z; o, y*, B} + op(1), where o0,(1) denotes
a term that converges to zero in probability. Consequently,
n'*[Apr(P. B) — o — E($(Z: j1o, y*. )] converges to a
normal limit with variance var(¢).

With 7, (X; y) = 9 (X;y)/dy and mg(X; B) = dm(X; B)/
o, we obtain from

8¢ % %

E ay_T(Z’ Mo, }’ ) ﬂ )
_p| X
[ 72 (X5 p)
8¢ % %
E W(Z’ Mo, }’ 9 ﬂ )

[ nO(X) T L p*
{1 7(X: *>}m‘*(x’ﬂ)}’

that E{3@(Z; o, y*, B*)/3y"} = 0 and E{d$(Z; o, y*, B*)/
BT} = 0 at .4 (y) N .#(B) since then my(X) = 7(X; y*) and
mo(X) = m(X; B*). The influence function of the DR estimator
then simply becomes ¢ = ¢, where ¢ is the influence function of
apr(y, B); thatis, the DR estimator of . evaluated at fixed nui-
sance parameter values y and B. Thus, under correctly specified
working models, the choice of root-n consistent estimators of
the nuisance parameters does not affect the asymptotic distribu-
tion of the DR estimator. This property, which is more generally
satisfied for DR estimators (Robins and Rotnitzky 2001), has
stimulated the use of standard methods, such as maximum like-
lihood, to estimate the nuisance parameters (Bang and Robins
2005).

[m(X; B%) — mo(X)} 71 (X; y*)] :

=F

3. BIASED-REDUCED DOUBLY ROBUST
ESTIMATION

The property that the choice of root-n consistent estimators
of the nuisance parameters does not affect the first-order asymp-
totic behavior of a DR estimator, is lost as soon as one of both
working models is misspecified. Starting from a given DR esti-
mator, infinitely many DR estimators can therefore typically be
constructed by varying the choice of nuisance parameter estima-
tors. This calls for estimation strategies for the nuisance param-
eters that are optimal according to some criterion. In this article,
we propose nuisance parameter estimators such that their proba-
bility limits locally minimize the squared first-order asymptotic
bias of the DR estimator under misspecification of both working
models.

To make the presentation as general as possible (with a slight
abuse of notation to simplify), let wy denote the (unknown)
population value of the scalar target parameter and Apgr(y, )
a DR estimator for it, based one finite-dimensional working
models .#Z (y) and .# (B) indexed by parameters y and $ which
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take on the values y( and B¢ when, respectively, .# (y) and
A (B) hold. The observed data is denoted {Z; : i =1, ...,n}.
Finally, ¢(Z; 1, ¥, B) denotes the influence function of the DR
estimator ipr(y, B).

3.1 Proposal

Consider possibly misspecified working models .#Z(y) and
A (B) at fixed known values y and B, respectively. The first-
order asymptotic bias of the DR estimator is then given by
bias(y, B; o) = E{¢p(Z; o, y, B)}. In the missing data prob-
lem of Section 2, this is also the total finite-sample bias.
By the double robustness, bias(yg, B; o) = 0 for any B un-
der .#(y) and bias(y, Bo; o) = 0 for any y under .Z(B).
This property is lost when both nuisance working models are
mlsspeaﬁed Suppose now that there exists a vector (yBR ,
Bir )T such that E{d¢(Z; 110, ¥ig. Big)/d¥} = 0 and E{d¢
(Z; 1o, Yirs Bir)/9B} = 0, with BR an abbreviation for bias-
reduced The following theorem then shows that (yBR ,

)T locally minimizes the squared first-order asymptotic
bias in the direction of y and 8, explaining the subscript BR.

Theorem 1. Under suitable regularity conditions (see Ap-
pendix C of the online supplemental material), (yERT,
Bir’)" locally minimizes the squared first-order bias
bias’(y, B; io), with (¥ip”, Big’)” a solution to E{d¢(Z;
Ko Vs Bir)/37) = 0 and E{d(Z: 110, ¥ e Bsr)/3B) = .

Proof. Under regularity conditions that allow us to inter-
change integration and differentiation,

I . I
5b1as2(y, B: o) = 2bias(y, B; Mo)gblas()’, B; 140)

9
= 2bias(y, B; no)E {%(Z;/Lo, Y, ﬂ)}

and likewise for B. The result follows since by def-
inition the values yj. and B satisfy the equations
E{0¢(Z; o, Ygr»> Bpr)/07} = 0 and E{0P(Z; 1o, Y R+ ﬂBR)/
B} =0.

In practice, the values (yERT, ﬂERT)T that solve
the mean gradients E{d¢(Z; 1o, Y- Brr)/0¥} =0 and
E{0¢(Z; 1o, yig> Bir)/9B} = 0 are unknown and need to be
estimated. Therefore, define the estimators p g and B Br s the
solutions to the estimating equations

E,(06(Z; o, Do Bor)/9B) = 0 3)
E{0¢(Z; po, Ppr- Ber)/ 0¥} = 0. “)

When the gradient of ¢(Z; 1o, ¥, B) with respect to y or 8
depends on the unknown population value wg, a preliminary
consistent DR estimator ,&Drg is substituted for 11 (e.g., the de-
fault DR estimator based on MLEs for the nuisance parameters).
The following theorem shows that (3) and (4) yield consistent
estimators p g and BBR for yo and By under .# (y) and .Z (B),
respectively. The resulting DR estimator pg(Pgg. Bgg) is re-
ferred to as the bias-reduced DR estimator.

Theorem 2. Under suitable regularity conditions (see Ap-
pendix C of the online supplemental material), pggr is a
consistent estimator for y, under .#(y) and ﬁBR is a
consistent estimator for B¢ under .Z ().
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Proof. We give the proof for pzr. Under model .Z (y), the
(unknown) population value y, is well defined. By the dou-
ble robustness of the estimator Apr(Y, B), ¢(Z; o, Yo, B) has
mean zero for all 8. Consequently, with Fy(z) denoting the true
(unknown) joint distribution function of Z,

0= @m(z 10, Yo, B)) = / 3510 Y0 BXF(2)

= E{aﬂ¢(Z Mo, Y0, ﬁ)}

for all B assuming we can interchange integration and dif-
ferentiation (see Appendix C of the online supplemental ma-
terial). Note that we do not take derivatives of Fy(Z) with
respect to B, since the expectation is taken under the true
data-generating mechanism, which stays fixed as B varies.
Hence, at .#(y), the gradient d¢(Z; o, Yo, B)/9B yields an
unbiased estimating function for y. Under suitable regular-
ity conditions (Robins, Rotnitzky, and Zhao 1994, app. B),
it now follows from the uniform WLLN (Newey and Mc-
Fadden 1994, Lemma 4.3) and the fact that plim([LPDR1 = Uo

under . (y) that 0 = plim[ £, {0¢p(Z; [Lgﬁl, Pr Ber)/0B}] =
E{0¢(Z; 1o, yir> Bir)/9B} with probability limits ygp =
plim(Ppg) and B, = plim(Bgg) so that yo = pi; and thus
VR 1S a consistent estimator of y. O

Theorem 2 shows that yjp =po under .Z(y) and
Bir = Bo under .#(B). This is not surprising because
min,r gryr {bias’(y, B; o)} = 0 under .#(y) U .#(B). Fur-
thermore, bias(y gg, BBR; to) = bias(y§r. Birs o) + o(1) (see
Appendix B of the online supplemental material), and hence,
the squared first-order asymptotic bias is also locally mini-
mized when the fixed values (yBR , Bir T are replaced by

root-n consistent estimators (J 5z, ﬂBR) . However, the bias op-
timality promised by Theorem 1 may become somewhat il-
lusory when the estimating Equations (3) or (4) depend on
the population value po. The reason is that in this case the
values (5", Bz’ )" no longer minimize bias*(y, B; o) =
E{¢(Z; no, ¥, B)}?> but instead minimize bias’(y, B;u*) =
E{¢p(Z; ", y, B)}* with pu* = plim(ﬁpDrlil) which may differ
from o under misspecification of both nuisance working mod-
els. The bias optimality of Theorem 1 is therefore limited to
DR estimators for which the left-hand sides of (3) and (4) do
not depend on the target parameter. Fortunately, many target
parameters for which DR estimators exist satisfy this property.
For instance, the class given in Robins et al. (2008, sec. 3.1)
satisfies this; in particular, this is satisfied for the missing data
example in Section 2 (see Equation (2)). When the left-hand
sides of (3) and (4) do depend on the target parameter, then
the bias optimality of Theorem 1 remains useful for score tests
of the null hypothesis that u = i for some fi; that is, tests of
E{¢p(Z; i, yo, Bo)} = 0. When p is substituted by /i in (3) and
(4) the resulting (probability limits of the) estimators Py and
Bgr continue to minimize EX{¢(Z; i, y, B)}.

A limitation of the proposed approach is that it demands
working models of the same dimension because the gradient
of ¢ with respect to B is used as an estimating function for y
and vice versa. Restrictions on the dimension of the working
models are also seen in other proposals (Rotnitzky et al. 2012).
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This can be remedied by enlarging the working models with
clever choices of covariates until they reach the same dimension
(see Section 7).

Remark 1. The validity of the proposal is predicated on the
availability of a DR estimator; it cannot be used for arbitrary
estimators. Indeed, reconsider the missing data problem of Sec-
tion 2 with Aor(B) = E,{m(X; B)} for m(X; B) = g7 (1, X")”
an estimator of wo. For fixed B, the influence function of
for(B) is por(Z; o, B) = m(X; B) — uo and the squared bias
is E{m(X; ) — no)*. In this case, E{ddor(Z; po, B)/IB} =
E{(1,X™)T} does not depend on B and hence the gradient
0¢or(Z; 1o, B)/9B does not provide an unbiased estimating
function.

3.2 Further Properties

It follows from Proposition 1 (and Appendix A of the on-
line supplemental material) that at .Z (y) N .# (B), small per-
turbations (of the order one over root-n) in y and f do not
affect the first-order asymptotic behavior of the DR estimator
in the sense that E{d¢(Z; o, y*, B)/0B} = 0 for all B and
E{0¢(Z; 0o, y, B*)/0y} = 0 for all y. This local robustness is
lost as soon as one of the working models is misspecified. The es-
timators g and By for the nuisance parameters are designed
to restore this local robustness property under model misspec-
ification. It is hence not entirely surprising that (the probabil-
ity limits of) these estimators locally minimize biasz(y, B; o).
Specifically, they ensure that the bias-reduced DR estimator
Apr(PER, 3BR) is first-order ancillary (Cox 1980) under mis-
specification of the working models in the sense formalized in
the following corollary.

Corollary 1. Under suitable regularity conditions (Robins,
Rotnitzky, and Zhao 1994, app. B), nl/z{lLDR(}’BR»ﬁBR)_

o} = nl/zEnW(Z Mo, YEr» BEr)} + 0,(1) when pgp and .BBR
are the solutions to (3) and (4) with yfz = plim(Pyr) and

Bir = plim(Bgp).

Proof. This follows from the proof of Proposition 1 because
(under standard regularity conditions) (Pgr — ¥ §gr) and (B BR —
Bir) are O,(n~"/?) (see also Theorem 3.13 in Robins et al.
(2008)). O

This first-order ancillarity implies that the first-order asymp-
totic behavior of [Apr(Pgpgrs BBR) is the same as that of
Apr(Y iR, Bir)» in which P g and BBR are substituted by their
probability limits y 5, and Bgg, respectively. This has a num-
ber of important consequences. First, the asymptotic variance
of the DR estimator fipr(Pgg, BBR) can be straightforwardly
estimated as one over n times the sample variance of the values
AZ;; fipr(PgR» BBR), PBR> BBR}, without having to correct for
the estimation of the nuisance parameters. Similarly, a score
test of the null hypothesis that u = j for some i simplifies to
a one-sample #-test of the null hypothesis that ¢(Z; fi, y, Bo)
has mean zero. Second, the estimators pzr and By tend to de-
liver reasonably efficient DR estimators as will be confirmed in
simulation studies in Section 4. This can be intuitively expected
because an estimator tends to be less variable when evaluated
at fixed nuisance parameter values instead of estimated ones.
However, an efficiency benefit relative to the use of maximum
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likelihood estimation of the nuisance parameters is not theo-
retically guaranteed. One reason for this is that under model
misspecification, different estimators 7 and B of the nuisance
parameters may converge to different probability limits y* and
B* and thereby influence the variance of ¢(Z; u*, y*, f*) with
w* the corresponding probability limit of the DR estimator un-
der model misspecification. A second reason is that an estimator
may sometimes vary less when evaluated at estimated rather than
known nuisance parameters (Rotnitzky, Li, and Li 2010).

Remark 2. James Robins, Andrea Rotnitzky, Eric Tchetgen
Tchetgen, and a referee noted that Robins et al. (2008) use
similar estimating equations like (3) and (4) in an intermedi-
ate simplifying step in the construction of higher order influ-
ence functions, but with a different objective. In their approach,
these estimating equations are not used to directly estimate nui-
sance parameters describing parametric working models. In-
stead they first obtain (potentially highly data-adaptive) initial
estimators of these working models and then use estimating
equations similar to (3) and (4) to estimate nuisance parame-
ters describing specific linear extensions of these initial estima-
tors (where the dimension can increase with the sample size);
in contrast, we allow for arbitrary but finite-dimensional nui-
sance working models. As a result, first-order ancillarity (see
our Corollary 1 and Theorem 3.13 in Robins et al. (2008)) with
respect to their fluctuation parameters is obtained, which sim-
plifies the derivation of higher order influence functions. Our
Theorem 2 is also similar to their Lemma 3 but their’s allows
for infinite-dimensional nuisance parameters.

3.3 lllustration: Missing Data Problem

To illustrate the bias-reduced DR estimation strategy, we re-
turn to the missing data problem introduced in Section 2. From
the influence function (2) of the DR estimator, it follows that (3)
equals E, {1 — R/m (X, f/BR)}mﬂ(X;BBR)] = 0. For instance,
for m(X; B) = B1 + B4 X, this becomes

- R T
E, |1l ——— 1 (1,XT) | =o. 5
H (X, ?Blo}( ) ] ®

The first equation, 1 = E,{R/7(X; Vsr)}> ensures that the in-
verse weights sum to the sample size; (pr(Ppr, /AJBB) then
equals  E,{m(X; Bgp)} + Eq[R/7(X; Pgp){Y — m(X; Bgr)}l/
E,{R/7m(X;Pgr)}, also considered in Robins et al. (2007).
The remaining equations in (5) impose that the sample
mean of the covariates, En(X), equals the weighted sam-
ple mean En{RX/n(X;f/BR)}. These restrictions help to en-
sure stable weights; the bias-reduced DR estimation strat-
egy might therefore alleviate the problem of inefficiency due
to highly variable weights (Robins et al. 2007). Restrictions
(5) are also known as calibration equations in the survey
sampling literature where they are used to improve the sim-
ple Horvitz-Thompson estimator by making it unbiased un-
der a linear prediction model (Kott and Liao 2012). For lin-
ear outcome models (or more generally whenever m(X; )
lies within the span of the gradient mg(X, B)), it now fol-
lows from (5) that Apr(Ppg, Ber) = EA{RY/m(X; Ppr)} =
E{RY /n(X; Pgr)}/ E{R/7(X; Pgr)}. This demonstrates that
the bias-reduced DR estimator remarkably reduces to a sim-
ple IPTW estimator, making Apr(P g, BBR) sample bounded
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(Robins et al. 2007, sec. 4.1) in the sense that it lies with prob-
ability one within the admissible range of observed outcome
values (i.e., [Yiin, Ymax], where Yy, = min{Y; : R; = 1} and
Y = max {Y; : R; = 1}) whenever the outcome Y is continu-
ous with conditional mean linear in X (or m(X; #) lies within
the span of the gradient mg(X, B)).

From (2), it follows that the estimating Equation (4) for
B equals E,[Rmy,(X; 9pr)/m2(X; Ppp){Y — m(X; Bp)}] = 0.
For instance, when 7 (X; y) = expit(y; + y1 X), this becomes

(6)

which amounts to weighted least squares based on the complete
cases with weights {1 — 7 (X;;Ppr)} X 7 1(X;; Ppg). High
(low) weights are thus given to covariate regions with low (high)
probability of observed data, thereby forcing the model to fit well
in regions with most missing data. The bias-reduced DR estima-
tor can now be equivalently written as a mean im[A)utation esti-
mator Qpr(Ppr. Ber) = E«{RY + (1 — R)ym(X; Bgr)}, which
averages the observed outcome for responders and a pre-
dicted outcome for nonresponders. This is desirable as it en-
sures that the aforementioned boundedness property is also
effective whenever the outcome predictions obey the admis-
sible range of the data. For instance, when Y is binary and
m(X; B) = expit(B + B2 X), m(X; Bgr) falls between 0 and 1
so that fipgr(Ppg. Bggr) is guaranteed to lie between 0 and 1.

While Equation (6) for B can be solved using weighted
regression in standard statistical software, this is not so for
Equation (5) for y. To accommodate this, arguing along
the lines of Tan (2010), we define the function .#(y) =
E,[—Rexp{—pyT(1,X")T} — (1 — R)yT(1, X")T] which is an
integrated form of (5) in the sense 9.%(y)/dy equals (5).
The function .%#(y) is always concave and bounded on every
bounded set for y. In Appendix D of the online supplemental
material, a condition under which .7 (p) has a unique maximum
is provided and in Appendix J of the supplemental material we
provide an R function to obtain fipr(Pgr. Ber)-

The bias reduction promised by Theorem 1 may be substan-
tial, as we argue next. Let §(X; y*) = n(X; y*) — mp(X) denote
the degree of model misspecification in the model for the PS at
given X and A(X; %) = m(X; %) — my(X) the degree of model
misspecification in the working model for the conditional mean
outcome at given X. When both working models are misspeci-
fied, the asymptotic bias of the DR estimator can be written as
(see e.g., Vansteelandt, Bekaert, and Claeskens 2012)

5(X; y*)A(X;ﬂ*)} _

7
7(X;py*) @

bias(y*, B*; uo) = E [
It is thus driven by the degree of misspecification §(X;y*)
and A(X;B*) but may get inflated in regions with small
PS. This inflation is a legitimate concern because in these
regions with low PS, the probability of observing Y is
low and misspecification in m(X;B) is most likely. Bias-
reduced DR estimation prevents such inflation. For instance,
using the first component of the vector of estimating equa-
tions in (6), we obtain that E[mo(X)A(X; B5r)/m(X; yEr)] =
E{A(X; Br)mo(X)}. This is so whenever the logistic regression
model for the PS includes an intercept. The asymptotic bias (7)
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can then be equivalently written as E[A(X; BEp){1 — mo(X)}],
and hence does not get severely inflated in covariate regions
with small PS.

Remark 3. Like our proposal, a recent proposal by van der
Laan (2014) also focuses on bias reduction. This proposal is
different in that it is based on removing an approximation to the
first-order bias of the DR estimator by cleverly fitting highly
data-adaptive working models. In view of simplicity, the main-
stream use of parametric models and the difficulty of obtaining
good approximations to the bias, our proposal avoids such ap-
proximations and focuses on bias reduction under misspecifica-
tion of (both) parametric working models.

4. SIMULATION STUDIES

We carried out different simulation studies to compare
the performance of the bias-reduced DR estimator figr =
ADR(P BR» ﬁBR) with several alternatives for the estimation of
a mean outcome in the presence of incomplete data. Nui-
sance parameters estimated via standard MLE are denoted
Yme and ﬁMLE. We consider standard estimators [iprw =
En{RY/n(X; ?MLE)}’ /:\LOR :AEn {m(X’ ﬂMLE)}s and the DR es-
timator Amre = Apr(Pmig. Bmie)- Next we consider the DR
estimator iggm Which uses a PS estimated under a general-
ized boosted model (GBM), a multivariate nonparametric re-
gression technique (McCaffrey, Ridgeway, and Morral 2004).
We consider the calibrated likelihood estimator fitan of Tan
(2010) based on a nonparametric likelihood, and the DR esti-
mator fiproy = Apr(PmiEs f!PROJ) of Cao, Tsiatis, and David-
ian (2009), which uses an estimator f!PROJ that minimizes the
estimated asymptotic variance of the DR estimator under the as-
sumption of a correctly specified PS model. Finally, we consider
two TMLEs ftmie and frwmig-si. (van der Laan and Rose 2011)
based on quasi-log-likelihood loss functions, where fitypig uses
ordinary least squares as an initial estimate for the conditional
mean outcome, whereas [tMrLg.sr uses a super learner (van
der Laan and Rose 2011, chap. 3) based on a library consist-
ing of generalized additive and linear models, random forests
and adaptive polynomial splines. For each scenario, we perform
1000 Monte Carlo runs at sample sizes of n = 200 and 1000. For
each estimator, we calculated the Monte Carlo bias (BIAS), the
root mean square error (RMSE), the median of absolute errors
(MAE) and the Monte Carlo standard deviation (MCSD). Oc-
casionally, no convergence was attained for the estimator Py
at n = 200, as indicated below each table.

4.1 Scenario 1

The first simulation scenario considers a simple data-
generating mechanism where for each i (i = 1,...,n), X; S
N(O, 1), Ri|X; < Ber{mo(X;)} and Y;|X; < N{mo(X,), 1}. For
each setting, the following working models are used: 7 (X; y) =
expit(y; + y2X) and m(X; B) = B1 + B> X. Simulation experi-
ments with correctly specified working models used my(X) =
1 4+ X and 7o(X) = expit(§ X) for &€ = 1, 2. To allow for mis-
specification in the outcome model, we additionally generated
datausing mo(X) = X% and np(X) = expit(¢ X) foré = 1,2.To
allow for misspecification of the PS model, we generated data
using mo(X) =1+ X and mo(X) = expit(—4 + 1.5/ X% +
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0.75X + 0.5|X|'9), as in Vansteelandt, Bekaert, and Claeskens
(2012). Finally, we also generated data with mo(X) = X 2 and
7o(X) = expit(—4 + 1.5/ X% + 0.75X + 0.5|X|'?) to allow
for misspecification of both models. In each of the settings,
the target parameter E(Y) = uo equals one.

Results for the first simulation scenario are given in
Table 1 (n = 200) and Table 2 (n = 1000). Both tables show
similar results. When both working models are correct and
weights are not extreme (£ = 1), all estimators perform sim-
ilarly in terms of bias and precision. When at most one working
model is misspecified, figr is competitive with the other DR
estimators in terms of RMSE. In these cases, figg shows lower
or similar bias than figpm, AtMLE, and frmigsL, especially
when the outcome model is misspecified. When the PS model is
correctly specified, figr outperforms {iproy for low sample size
and extreme weights (§ = 2) and performs just slightly worse
in other settings. When the PS working model is misspecified,
[gr drastically outperforms [iprey. Finally, when both working
models are misspecified, figg partly eliminates the bias am-
plification of the DR estimator based on standard MLE for
the nuisance parameters, although not as much as fiproy and
AtMLE-sL- Table 1 in the Appendix K of the online supplemental
material suggests that this may be an artefact related to the con-
sidered data-generating mechanism and sample size: it shows
that when both nuisance working models are misspecified, the
bias of fiproy keeps on increasing with increasing sample size
(and surprisingly also its variance) in contrast to the bias of figr
which remains stable; this is in line with the fact that figg mini-
mizes the asymptotic bias. Finally, the smaller bias of fipyvie-sL
and fitan under misspecification of both working models is
not unexpected because of the richer working models for the
conditional mean outcome on which these rely.

Table 3 shows the performance of the sandwich estimator
for the standard error for figr computed as the empirical vari-
ance of (2) and confirms the asymptotic result of Corollary 1.
Not surprisingly, there is undercoverage of the 95% confidence
intervals when the inverse PS becomes extreme, especially at
low sample size. When weights are extreme, convergence to the
normal limit distribution happens more slowly. The coverage is
better at n = 1000.

4.2 Scenario 2

The second simulation scenario is taken from
Kang and Schafer (2007a). For each i (i=1,...,n),
Z,‘ = (Z,‘], Z,‘z, Z,‘3, Z,‘4)T é N(O, I) where I is the 4 x 4 iden-
tity matrix, R;|Z: < Ber{mo(Z;)} with 7o(Z) = expit(—Z; +
0.5Z, —0.25Z5 —0.1Z4) and Y;|Z; CA N{mo(Z;), 1} with
mo(Z) =210+ 27.4Z, +13.7Z, + 13.7Z53 + 13.7Z4. Mis-
specified working models are linear for the outcome
model and logistic for the PS model, with covari-
ates Xi = (X“, Xiz, Xl‘3, X,’4)T with Xl = exp(Zl/Z),
X, = Zy/{1 +exp(Z))} + 10, X3 =(Z1Z3/25+0.6)> and
X4 =(Zy+ Z4 +20)>. The target parameter E(Y)= po
equals 210. We limit ourselves to the realistic settings where
the working models both use either the covariates Z; or the
covariates X; (k=1,...,4) and thus both working models
are correctly specified or both working models are incorrectly
specified. Table 4 shows the simulation results for two
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Table 1. Simulation results based on 1000 Monte Carlo replications for Scenario 1, n = 200
Estimator Bias RMSE MAE MCSD Bias RMSE MAE MCSD
n =200, up =1
OR correct, PS correct (§ = 1) OR incorrect, PS correct (6 = 1)
Aor —0.0015 0.13 0.09 0.13 —0.349 0.40 0.35 0.19
frprw —0.0010 0.15 0.09 0.15 —0.004 0.30 0.17 0.30
fAMLE —0.0014 0.13 0.09 0.13 —0.018 0.33 0.19 0.33
J —0.0012 0.13 0.09 0.13 —0.030 0.21 0.14 0.20
ATan —0.0011 0.13 0.09 0.13 —0.032 0.18 0.13 0.18
fiprOI —0.0023 0.15 0.10 0.15 —0.019 0.17 0.12 0.17
Acem —0.0012 0.13 0.09 0.13 —0.190 0.27 0.20 0.20
ATMLE —0.0005 0.13 0.09 0.13 —0.038 0.27 0.18 0.26
ATMLE-SL 0.0000 0.13 0.09 0.13 —0.027 0.17 0.12 0.17
OR correct, PS correct (§ = 2) OR incorrect, PS correct (§ = 2)
flor —0.0017 0.14 0.09 0.14 —0.81 0.84 0.81 0.22
fiprw 0.0030 0.26 0.12 0.26 —0.01 0.92 0.28 0.92
AMLE —0.0015 0.20 0.12 0.20 —0.06 1.19 0.44 1.19
fBr —0.0010 0.19 0.12 0.19 —0.11 0.26 0.17 0.24
JATAN —0.0006 0.21 0.13 0.21 —0.10 0.25 0.16 0.23
Aproy —0.0024 0.33 0.18 0.33 —0.07 0.34 0.19 0.33
M —0.0014 0.15 0.10 0.15 —0.54 0.60 0.53 0.26
AT™MLE 0.0029 0.17 0.11 0.17 —0.15 0.36 0.26 0.33
ATMLE-SL 0.0076 0.18 0.12 0.18 —0.08 0.24 0.15 0.23
OR correct, PS incorrect OR incorrect, PS incorrect
flor —0.0009 0.27 0.17 0.27 0.54 0.96 0.72 0.80
Aptw —1.6122 5.32 0.95 5.07 6.13 16.53 3.07 15.36
AmiE —0.0083 1.04 0.31 1.04 5.50 11.46 2.99 10.06
R —0.0030 0.29 0.18 0.29 1.03 1.23 1.05 0.68
ATaN —0.0107 0.30 0.19 0.30 0.43 0.67 0.47 0.51
fipror —0.0283 0.57 0.23 0.57 —0.09 0.62 0.24 0.62
GBM —0.0040 0.28 0.19 0.28 0.33 0.71 0.48 0.63
At™MLE —0.0059 0.28 0.18 0.28 1.10 1.31 1.14 0.70
ATMLE-SL —0.0117 0.28 0.19 0.28 0.32 0.52 0.38 0.41

NOTE: Bias, Monte Carlo Bias; RMSE, root mean square error; MAE, median of absolute errors; MCSD, Monte Carlo standard deviation; OR, outcome regression; PS, propensity
score. No convergence for pgr was attained in five of the 1000 runs for the settings OR correct, PS correct (§ = 2) and OR incorrect, PS correct (§ = 2) and in three of the 1000 runs

for the settings OR correct, PS incorrect and OR incorrect, PS incorrect.

scenarios where either R = 1 or R = 0 denotes the data that are
observed.

As the theory dictates, all DR estimators show similar behav-
ior when both working models are correctly specified. When the
observed outcome RY is used, iy g shows severe erratic be-
havior, corresponding to the results of Kang and Schafer (2007a)
but this behavior is partially eliminated when using (1 — R)Y as
the observed outcome, in which case fiy g now outperforms
for (Robins et al. 2007). The DR estimator jfigr does not
show this severe erratic behavior for both RY and (1 — R)Y.
In line with Theorem 1, it has smaller bias compared to stan-
dard MLE. There is no single alternative outperforming the oth-
ers for both sample sizes and both settings RY and (1 — R)Y.
Overall, figr shows competitive performance with the other
DR estimators (see also Table 1 in the Appendix K of the on-
line supplemental material for additional results with increasing
sample sizes). Table 5 shows the performance of the sandwich
estimator for the standard error of figg computed as the em-
pirical variance of (2) and confirms the asymptotic result of
Corollary 1.

5. EXTENSION TO OTHER DOUBLY AND MULTIPLY
ROBUST ESTIMATORS

5.1 Marginal Treatment Effects

Consideriid data {Z; = (Y;, A;, X;),i = 1,...,n}, where ¥;
is the outcome of interest, A; is a dichotomous treatment taking
values zero and one and X; is a sufficient set of covariates to
control for confounding of the treatment effect, in the sense that
Y(a) 1L A|X for a € {0, 1}. Here, Y(a) denotes the counter-
factual outcome for treatment level a € {0, 1}, which is linked
to the observed data through the consistency assumption (i.e.,
Y(a) =Y iff A = a).

To obtain a DR estimator for the marginal treatment ef-
fect v = E(Y(1)} — E{Y(0)} = pu’ —ul’, we need three
working models: a model 7 (X;y) for the PS P(A = 1|X)
and models m@(X;a@) for the conditional mean outcome
E(Y|A = a,X) fora € {0, 1}. We estimate the treatment effect
ast = E{Y(1)} — E{Y(0)} = ag}; — ,a](;)]){ where a DR estima-
tor A5y = A (y, @) of 1@ is obtained as the solution to the
estimating equation E, {¢“(Z; 19, y, a@)} = Ofora € {0, 1}
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Table 2. Simulation results based on 1000 Monte Carlo replications for Scenario 1, n = 1000
Estimator Bias RMSE MAE MCSD Bias RMSE MAE MCSD
n = 1000, uo =1
OR correct, PS correct (§ = 1) OR incorrect, PS correct (§ = 1)
Aor 0.0037 0.057 0.039 0.057 —0.349 0.36 0.35 0.09
Aprw 0.0022 0.064 0.044 0.064 0.006 0.13 0.08 0.13
AMLE 0.0029 0.059 0.039 0.058 0.003 0.15 0.10 0.15
Ar 0.0031 0.059 0.039 0.058 —0.003 0.09 0.07 0.09
Atan 0.0033 0.059 0.038 0.059 —0.005 0.08 0.06 0.08
Apros 0.0038 0.060 0.039 0.060 —0.002 0.07 0.05 0.07
Acem 0.0032 0.058 0.040 0.058 —0.138 0.16 0.14 0.08
AtMLE 0.0030 0.058 0.039 0.058 —0.004 0.12 0.09 0.12
ArMLE-SL 0.0031 0.058 0.039 0.058 —0.002 0.07 0.05 0.07
OR correct, PS correct (§ = 2) OR incorrect, PS correct (§ = 2)
Aor 0.0033 0.065 0.044 0.065 —0.810 0.82 0.81 0.10
Aiprw 0.0051 0.120 0.066 0.120 —0.023 0.34 0.17 0.34
AmLE —0.0003 0.090 0.057 0.090 —0.041 0.50 0.25 0.49
J23 0.0004 0.085 0.057 0.085 —0.052 0.14 0.09 0.13
A TAN 0.0005 0.091 0.060 0.091 —0.042 0.11 0.07 0.10
Apror —0.0014 0.109 0.069 0.109 —0.027 0.12 0.07 0.11
Acem 0.0026 0.072 0.048 0.071 —0.407 0.43 0.40 0.12
ArmLe 0.0011 0.080 0.054 0.080 —0.124 0.19 0.14 0.15
ATMLE-sL 0.0011 0.081 0.055 0.081 —0.041 0.11 0.07 0.10
OR correct, PS incorrect OR incorrect, PS incorrect
fLor —0.0056 0.11 0.07 0.11 0.70 0.78 0.70 0.35
Awprw —1.8704 2.50 1.46 1.65 7.34 10.03 5.59 6.84
AMLE —0.0264 0.52 0.20 0.52 7.24 9.64 5.57 6.37
BR —0.0057 0.11 0.08 0.11 1.24 1.28 1.22 0.33
Artan —0.0043 0.12 0.08 0.12 0.43 0.47 0.42 0.20
Apros —0.0007 0.50 0.17 0.50 0.09 0.57 0.19 0.56
GBM —0.0002 0.13 0.09 0.13 0.20 0.27 0.21 0.18
AtvLe —0.0052 0.12 0.08 0.12 1.20 1.24 1.20 0.31
ATMLE L —0.0071 0.12 0.08 0.12 0.10 0.18 0.12 0.15

NOTE: Bias, Monte Carlo Bias; RMSE, root mean square error; MAE, median of absolute errors; MCSD, Monte Carlo standard deviation; OR, outcome regression; PS, propensity

score.

(Scharfstein, Rotnitzky, and Robins 1999b), where

AY
oV (Z;pn Dy, aV) = ——
7(X;p)
_ATTEY) 0k o) —
7(X;p)
1—-A)Y
(0) 7: 0) 0y — (—
¢ LTy, @) 1 —n(X;p)
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OX: ) — O
Ty T

The proposed estimation strategy proceeds by setting the gradi-
ents w.r.t. the nuisance parameters equal to zero, which amounts

to solving (?g}%, &;‘,;) from the system

- A
0="F, | {1 - ———1m x;a) |, (8)
H 7 (X; ) } R
0=E ||y - mPx:afp)] — L& | ©
72X P40

Table 3. Performance of standard error estimates and confidence intervals for the bias-reduced strategy based on 1000 Monte Carlo
replications in Scenario 1

n =200 n = 1000
Setting MCSD ASSE Cov MCSD ASSE Cov
OR correct, PS correct (§ = 1) 0.13 0.13 0.94 0.06 0.06 0.96
OR correct, PS correct (§ = 2) 0.19 0.15 0.88 0.09 0.08 0.91
OR incorrect, PS correct (§ = 1) 0.20 0.17 0.88 0.09 0.09 0.94
OR incorrect, PS correct (§ = 2) 0.24 0.17 0.77 0.13 0.10 0.80
OR correct, PS incorrect 0.29 0.22 0.85 0.11 0.11 0.94
OR incorrect, PS incorrect 0.68 0.43 0.34 0.33 0.28 0.01

NOTE: MCSD, Monte Carlo standard deviation; ASSE, average of sandwich standard errors;
PS, propensity score.

COV, Monte Carlo coverage of 95% Wald confidence intervals; OR, outcome regression;
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Table 4. Simulation results based on 1000 Monte Carlo replications for Scenario 2, oy = 210

Estimator Bias RMSE MAE MCSD Bias RMSE MAE MCSD

Observed outcome RY Observed outcome (1 — R)Y

n =200

OR correct, PS correct OR correct, PS correct
flor 0.092 2.52 1.68 2.52 0.088 2.53 1.68 2.53
fiapTw —1.761 28.15 13.22 28.10 —0.254 16.64 8.22 16.65
AMLE 0.099 2.53 1.70 2.53 0.085 2.53 1.73 2.53
fiBr 0.090 2.54 1.71 2.54 0.095 2.54 1.69 2.54
JATAN 0.094 2.53 1.72 2.53 0.085 2.53 1.69 2.53
fipros 0.090 2.55 1.71 2.55 0.079 2.54 1.72 2.54
flcem 0.093 2.53 1.70 2.53 0.088 2.53 1.67 2.53
AT™MLE 0.032 2.53 1.72 2.53 0.238 2.55 1.77 2.54
ATMLE-SL 0.031 2.53 1.71 2.53 0.241 2.55 1.78 2.54

OR incorrect, PS incorrect OR incorrect, PS incorrect
flor —0.17 3.60 2.51 3.59 7.15 7.76 7.21 3.01
Aiprw 68.77 453.60 18.43 448.58 —0.80 12.18 6.24 12.16
AMLE —15.15 88.60 4.40 87.34 4.76 6.05 5.03 3.74
AR —2.24 4.45 2.78 3.85 3.44 4.63 3.55 3.10
Atan —2.55 4.31 2.96 3.47 4.76 5.79 4.85 3.30
fiproy —0.04 3.93 2.58 3.93 1.00 3.60 2.36 3.46
GBM —-0.22 3.46 2.42 3.45 5.84 6.58 5.86 3.03
AtMLE —4.38 6.20 4.08 4.39 443 5.56 4.47 3.35
JTMLE-SL —-2.31 4.02 2.72 3.29 3.75 5.07 3.95 3.41
n = 1000

OR correct, PS correct OR correct, PS correct
flor 0.023 1.12 0.76 1.12 0.024 1.13 0.76 1.13
fipTw —0.282 11.27 6.61 11.27 0.052 7.67 3.93 7.67
AMLE 0.023 1.12 0.76 1.12 0.022 1.13 0.78 1.13
fir 0.022 1.12 0.76 1.12 0.024 1.13 0.78 1.13
JATAN 0.021 1.12 0.76 1.12 0.024 1.13 0.77 1.13
fipros 0.024 1.12 0.76 1.12 0.025 1.13 0.77 1.13
fcm 0.022 1.12 0.76 1.12 0.024 1.13 0.77 1.13
AT™MLE 0.013 1.12 0.76 1.12 0.061 1.13 0.76 1.13
ATMLE-SL 0.013 1.12 0.76 1.12 0.060 1.13 0.77 1.13

OR incorrect, PS incorrect OR incorrect, PS incorrect

flor —0.46 1.64 1.11 1.58 7.18 7.31 7.14 1.35
Arprw 161.92 1194.95 36.92 1184.52 —1.00 4.93 3.12 4.83
AMLE —53.71 469.04 8.81 466.19 4.51 4.83 4.51 1.73
fBR —3.21 3.63 3.10 1.69 2.97 3.25 2.91 1.34
AN —-2.92 3.29 3.02 1.51 4.35 4.62 4.28 1.55
fiproy —1.55 2.03 1.56 1.32 1.39 1.92 1.53 1.33
GeM —0.60 1.56 1.09 1.44 4.83 5.03 4.75 1.39
ATMLE —4.73 5.13 4.73 1.99 4.16 4.43 4.11 1.52
JATMLE-SL —-2.25 2.76 2.34 1.61 2.65 3.12 2.57 1.65

NOTE: Bias, Monte Carlo Bias; RMSE, root mean square error; MAE, median of absolute errors; MCSD, Monte Carlo standard deviation; OR, outcome regression; PS, propensity
score. No convergence for g was attained in 13 of the 1000 runs for the settings OR correct, PS correct, n = 200 for both the observed outcome RY and (I — R)Y and in five of the
1000 runs for the setting OR incorrect, PS incorrect, n = 200 for the observed outcome RY.

Table 5. Performance of standard error estimates and confidence intervals for the bias-reduced strategy based on 1000 Monte Carlo
replications in Scenario 2

n =200 n = 1000
Setting MCSD ASSE COV MCSD ASSE cov
OR correct, PS correct (RY) 2.54 2.57 0.96 1.12 1.15 0.96
OR correct, PS correct ((1 — R)Y) 2.54 2.57 0.95 1.13 1.15 0.96
OR incorrect, PS incorrect (RY) 3.85 2.95 0.82 1.69 1.34 0.38
OR incorrect, PS incorrect (1 — R)Y) 3.10 2.73 0.73 1.34 1.25 0.35

NOTE: MCSD, Monte Carlo standard deviation; ASSE, average of sandwich standard errors; COV, Monte Carlo coverage of 95% Wald confidence intervals; OR, outcome regression;
PS, propensity score.
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and solving (?g)]){, &g)];) from a similar system of equations but

with A replaced by 1 — A, n(X;f/g}%) replaced by 1 — 7 (X;
PO, mO(X; &) replaced by m@(X; &%) and 7, (X; Pin)
by m,(X; ?g)l){) and where 7,(X;y)=0n(X;y)/dy and
mgﬁg)(X;a(")) = dm@(X; ) /da'@ fora e {0, 1}. This results
in estimators with similar properties as the estimators in Section
3.3. Note that the DR estimators 17-1()11)2 and ﬂ([())l)(, while relying
on the same working model 7 (X; y) for the PS, use different
estimators for the nuisance parameters indexing that model. In
particular, (9) forces the model to fit well in covariate regions
with low PS where not being treated is more likely and the equiv-
alent for &g’; forces the model to fit well in covariate regions
with high PS where being treated is more likely. Additionally,
(8) ensures stability of inverse weights equalling one over the
PS, while the equivalent for f/g)l)( ensures stability of inverse
weights equalling one over one minus the PS. This illustrates
that the nuisance parameter estimators adapt to the considered
estimand. The use of these estimators is illustrated in a reanal-
ysis of the SUPPORT study in Section 6.

A more general development works under the marginal struc-
tural model (Robins, Hernan, and Brumback 2000) E{Y (a)} =
Bo + Bia, where a € o/ may be a continuous exposure level
with o7 the support of A. In Appendix E of the online supple-
mental material, we show how a bias-reduced DR estimator for

B1 can be obtained.

5.2 G-Estimation for Semiparametric Regression Models

Consider the semiparametric linear regression model
E(Y|A, X) = my(X) + t90A (Robins, Mark, and Newey 1992).
A DR G-estimator g pr(y,®) of 1y is obtained by solving
0=EUc(Z;t,y, )} = E,[{Y — 1A — m(X;)H{A — 7(X;
¥)}], which is unbiased if either the working model (.Z(y))
7 (X;y) for E(A|X) or the working model (.Z (o)) m(X;a)
for E(Y|A =0,X) is correctly specified. For fixed y and
a, the DR estimator ?g pr(y, ) admits the expansion n'/?
{teor(y, @) — 70} = n'?E,{¢6(Z; 10, ¥, @)} + 0,(1)  with
influence function ¢g(Z; 1, ¥, a) = E7'[A{A — 7(X;p)}]
{A —n(X;y)HY — m(X;a)} — 19. The gradients of ¢g(Z; 19,
y,a) wrt. « and y then define the estimating equa-
tions for y and o that is, we solve (Pggr, &pr) from the
system 0 = E,[{A — 7(X; Pgp)}me(X;&pr)] and 0= E,
[{Y — m(X: &s)}W(A, X Pp)l, W(A, X Pip) = {4 — 7(X;
PerRE{ AT, (X; Ppr)} — 7y X5 Ppr)ER[A{A — (X PRI},
m,X;y) =0 (X;p)/0y, me(X;a) = 0m(X;a)/da. For a
linear outcome model m(X;a) =oz0+oc1TX and a logistic
regression model 7 (X;y) = expit(yp + yTX) for the PS,
the estimating equation for y reduces to standard MLE
because mq(X;apr) = (1,X7)7. The estimating equation
for o is obtained by substituting 7, (X; Ppr) = 7(X; PpRr)
{1 —7(X; Pp)}(1, X"

Consider now the semiparametric log-linear model
log E(Y|A, X) = myp(X) + 1pA (Robins, Mark, and Newey
1992). A DR G-estimator fé’DR(y,a) of 19 is obtained
by solving the estimating equation 0 = E"n{Ué(Z; T,y,00)} =
E,({A — n(X; PIHY exp(—t A) — exp{m(X; a)}], which is un-
biased if either the working model (Z(y)) n(X;y) or
the working model (Z(x)) m(X;a) for logE(Y|A =
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0,X) is correctly specified. Although the gradients of
the corresponding influence function qb’G(Z,-; T, Y,0) =
—E! {0UG(Z; vo, y, @)/ 0T} US(Zi; 10, y, ) Wor.t. the nuisance
parameters continue to deliver consistent estimators for the nui-
sance parameters, these estimators no longer ensure minimal
squared first-order asymptotic bias under misspecification of
both working models because these gradients now depend on
the unknown population value 7. Nevertheless, Theorem 1 con-
tinues to apply for score tests of the null hypothesis that T = T
for some 7. In particular, when the estimators Pz and @&gr
are defined with the known value Tsubstituted for the unknown
value of 7, they minimize E*{¢5(Z; T, Pgg, &pr)}-

5.8 Mean Outcome When Missingness is Nonignorable

We reconsider the estimation of a population mean
outcome o= E(Y) in the presence of incomplete data.
Suppose, as in Section 2, that we have iid data {Z; = (R;Y;,
R;,X;),i =1,...,n}, but that in contrast to Section 2, miss-
ingness is not ignorable. Suppose, therefore, that (i) P(R =
11X, Y) > 0 with probability 1 and (ii) if P(R = 0|X) > 0,
P(R =0|X,7Y) = expit{ho(X) + ¢(X, Y;k)} for some un-
known function 4((X) and a user-specified selection bias func-
tion g(X, Y; k) with known k and ¢(X, 0; k) = ¢(X, Y;0) = 0,
for example, g(X, Y;x) = «Y. Let .# (k) denote the model
for the full data defined by assumptions (i) and (ii). Since
k = 0 encodes MAR, the selection bias function ¢(X, Y; k)
encodes the degree of deviation from the MAR assumption
(Scharfstein, Rotnitzky, and Robins 1999a, b). Scharfstein,
Rotnitzky, and Robins (1999a) show that for each choice of «,
model .# (k) places no restriction on the observed data law
so that in particular the observed data carry no information of
k. Model . (k) is hence particularly useful for a sensitivity
analysis based upon varying k. It can be shown that at .Z («),
wo = E[RY /mo(X, Y;6) + {1 — R/mo(X, Y;k)} mp(X)] with
mo(X) = E(Y|R = 0,X) = E[Y exp{g(X, Y;1)}|R = 1,X]/
Elexp{g(X,Y;k)}|R = 1,X] and my(X,Y;k) = P(R =1]Y,
X) = [1 + exp{ho(X) + g(X, Y;)}] "

To construct a DR estimator for the target parameter (g
(Scharfstein, Rotnitzky, and Robins 1999b), we need two
working models: (i) a model .Z(8) for the unknown function
my(X) given by m(X; B), where m(X; B) is a known function
smooth in a finite-dimensional parameter $ and (ii) a model
A (y) for the unknown function 4y(X) given by A(X; y), where
h(X;yp) is a known function smooth in a finite-dimensional
parameter y. The induced working model for mo(X, Y;«k)
is then mw(X,Y:y,k)=[1+exp(hX;y)+qX,Y:i)}]"".
For given y and B, the target parameter po can be es-
timated as fipr = fipr(Y, B;k), obtained as a solution
to the estimating equation En{¢q(Z; apr, ¥, B, k) =0
where ¢,, the influence function of pg (at fixed nuisance
parameters), equals ¢ in (2) but with 7 (X;y) replaced
by n(X,Y;p,k). The bias-reduced DR estimator can be
straightforwardly obtained because of the double robustness
of fipr(y, B;k) under model . (x)N{.#(y)U . #(B)}.
Upon taking the gradients of ¢, with respect to B and p,
this amounts to solving (Pgg, /AJBR) from the system 0 = E,
{(1 = R[1 4 exp{h(X; Ppr) + ¢(X, Y5 )} Dmp(X; Bpr)}  and
0 = E,[R{Y — m(X; Bgr)} exp{h(X; Pgr) + ¢X, Y;K)}hy (X,
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Pa)l. with hy(Xiy) = 0h(X; p)/dy and mp(X;f) = om
(X; B)/dB. Note that the tilt function exp{g(X, Y, k)} in the
latter involves the selection bias function which links the
outcome distribution in responders to that in nonresponders,
thereby assuring the unbiasedness of this estimating equation
under model .# (k) N .#(B). This also results in estimators
with similar properties as the estimators in Section 3.3.

Note thus that the results of Section 3.3 immediately extend to
nonignorable missingness, unlike certain other alternative nui-
sance parameter estimation strategies. For instance, in Appendix
F of the online supplemental material, we show that strategy of
Cao, Tsiatis, and Davidian (2009) does not necessarily lead to an
unbiased estimating function for the parameter 8 indexing the
working model m(X; B) for E(Y|R = 0, X) when missingness
is nonignorable.

5.4 Multiply Robust Estimation in Semiparametric
Interaction Models

The principle behind the biased-reduced DR estimation strat-
egy is extensible to certain multiply robust estimators, esti-
mators that are consistent under a union model that assumes
that at least one of several working models holds. Consider
iid data {Z; = (Y;, A;, X;),i = 1, ..., n}, where Y; is the out-
come, A; = (A;1, A;2)T is a vector of binary exposure variables
and X; is a vector of extraneous variables. Vansteelandt et al.
(2008) developed inference for B in the semiparametric interac-
tion model . defined by E(Y|A, X) = BoA1A2 + q1(A1, X) +
02(A2, X) + qo(X) where g;(A;,X) (j = 1,2) and go(X) are
unknown functions satisfying ¢;(0, X) = 0. They showed how
a multiply robust estimator for Sy can be obtained under this
model. In Appendix G of the online supplemental material, we
show how a bias-reduced multiply robust estimator can be ob-
tained.

6. DATA ANALYSIS

We reanalyze data from the Study to Understand Prognoses
and Preferences for Outcomes and Risks of Treatments (SUP-
PORT) conducted in 1989-1994 in n = 5735 critically ill pa-
tients in five U.S. hospitals to study the effectiveness of right
heart catheterization (RHC) in the initial care unit (ICU) of crit-
ically ill patients (Connors et al. 1996). RHC is a diagnostic pro-
cedure which, at the time of the study by Connors et al. (1996),
was thought to lead to better patient outcomes by many physi-
cians. The effectiveness of RHC had not been demonstrated in
a randomized clinical trial but based on expert information, a
rich set of 72 variables was collected to adjust for potential
confounding (see Table 1 in Hirano and Imbens (2002)). The
original analysis in Connors et al. (1996) used PS matching and
surprisingly found that RHC leads to lower survival as compared
to not performing RHC. For each patient, the treatment status
A indicates 1 if RHC was applied within 24 h of admission and
0 otherwise. In total, 2184 patients received RHC and 3551 did
not. We consider the effect of RHC on 30-day survival ¥ with
Y =1 indicating survival, O otherwise. In total, 3817 patients
survived and 1918 died within 30 days. Figure 2 in Appendix
L of the online supplemental material visualizes the large dif-
ferences that exist in baseline covariate means between treated
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and untreated patients (see the x-axis). A detailed description is
given in Table 2 of Hirano and Imbens (2002).

To estimate the additive treatment effect v = E{Y
(D} — E{Y(0)}, we use the results of Section 5.1. As in Hi-
rano and Imbens (2002), we model the PS P(A = 1|X) us-
ing a logistic regression including a constant term and all
72 main effects; (X;y) = expit{y 7 (1, X7)7}. We model the
conditional mean outcome E(Y|A = a, X) for a € {0, 1} us-
ing both a linear and logistic regression model ml(lan) X;a@) =
«@(1,XT) and m{o (X:a@) = expit(e@” (1,X7)) for
a € {0, 1}, including a constant term and all 72 main ef-
fects. For the linear outcome model, we obtain estimators
(?gﬁ’]in,&gﬁnn,f/g)])z’nn,&g)})m) solving estimating Equations
(8) and (9) for condition A =1 and their analogues for con-
dition A =0 with 7,(X; y) = {1 — #(X; »)}r(X; »)(1, XT)T

and m&), . (X;a@) = (1, X7)7. The estimator Py ;, is ob-

@ lin
tained by maximizing the function 9‘,(1:? (y) = E,[(=1)%(A —
1+a)exp {(=D*pT(1,X")"} + (A —a)y™ (1, X")T]. For the
logistic outcome model, we obtain estimators (}A’gl)?,logi[’

~(1) ~(0) ~(0)
QpR logit P BRlogit» @BR jogit)  that the same equa-

tions but with mgj:z)’logit(x;a<a>)={1 — mion (X; @)} mion,

solve

X; ) (1, XT)T, The estimator ?gl;’logn is obtained by max-
imizing the function .Z.\) (y) which is defined like .Z."(p)

logit lin

but multiplied by {1 — m{o (X: & @)}hm{o (X: ¢ @) within the

E,-operator. Because %g[(y) depends on «@, these func-
tions are maximized using the MLE estimator for a®@. DR
estimators for the additive treatment effect v are then ob-

. N A1) o (1) ~(1) ~(0)  ~(0) ~(0)
tained as Tpriin = Apr (PR jin» ¥R 1in) — ADR(PBR jins ¥BR Jin)

and fBR,logil = 'a(l)(j;gl)l,logil’ &gl)(,logit) - I',‘\L(O)(j)g)l)(,logit’ &g)l)l,lngit)'
The estimators of the PS are different, albeit similar, when
estimating E{Y (1)} versus E{Y (0)}. They reveal sufficient over-
lap of the PS distributions in the RHC group and the no-RHC
group (see Figure 1 in Appendix L of the online supplemen-
tal material). Figure 2 in Appendix L of the online supple-
mental material shows that inverse probability of treatment
weighting balances the RHC group and the no-RHC group very
well. Below we summarize the data analysis results. We obtain
an unadjusted effect estimate fynagj = —0.0736 (SE = 0.0272,
95% CI —0.1269 to —0.0203) which is prone to potential con-
founding. The standard DR estimate for the average treatment
effect using MLE for all working models equals Tyigjin =
—0.0649 (SE = 0.0162, 95% CI —0.0966 to —0.0332) and
MLE Jogit = —0.0657 (SE =0.0158, 95% CI —0.0967 to
—0.0346). The biased-reduced DR estimation gives more ef-
ficient results: we obtain TgR ji = —0.0612 (SE = 0.0141, 95%
CI —0.0889 to —0.0335, avar(fmrgiin)/avar(Terin) = 1.32)
and 7gR jogit = —0.0610 (SE = 0.0137, 95% CI —0.0879 to
—0.0340, avar(fmiE,logit)/avar(pr ogic) = 1.33). Results for the
other improved DR estimators are similar, but less efficient. For
example, the calibrated likelihood estimator of Tan gives Tan =
—0.0622 (SE = 0.0154, 95% CI —0.0924 to —0.0319) and the
TMLE with default super learner gives Trmrgsp = —0.0586
(SE = 0.0149, 95% CI —0.0877 to —0.0295). Over the differ-
ent DR methods, the estimates of E{Y (1)} range from 0.630 to
0.634 and the estimates of E{Y (0)} vary from 0.687 to 0.696.
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7. DISCUSSION

In this article, we have proposed a novel strategy for esti-
mating the nuisance parameters indexing the working models
in DR estimators. A defining property of the proposed bias-
reduced DR estimation strategy is that it locally minimizes the
squared first-order asymptotic bias of the DR estimator defined
by finite-dimensional nuisance working models. It also makes
the DR estimator insensitive to local (one over root ) perturba-
tions of the nuisance parameters. This gets for instance reflected
in improved stability of the weights in those DR estimators that
invoke inverse weighting. A corresponding efficiency benefit is
hence logically anticipated. Formalizing this is, however, com-
plicated by the fact that the choice of root-n estimators for the
nuisance parameters affects the asymptotic distribution of the
DR estimator not only through their own asymptotic distribu-
tion, but also through their probability limits, which can be
different for each choice of estimator under model misspecifi-
cation. In future work, we hope to develop further insight into
the theoretical properties of bias-reduced DR estimators as well
as confidence intervals obtained by inverting score tests based
on this strategy.

The principle of the bias-reduced DR estimator is easy to use
and adapts to a wide variety of DR estimators. In that sense, it
differs from the various other targeted proposals that have been
made over recent years (Cao, Tsiatis, and Davidian 2009; Tan
2010; van der Laan and Gruber 2010; Tsiatis, Davidian, and
Cao 2011; van der Laan and Rose 2011; Rotnitzky et al. 2012;
van der Laan 2014), some of which are not straightforward or
even impossible to adapt to general DR estimators (for instance
when the observed data likelihood does not factorize). The sim-
plicity of the proposed approach not only comes through the
fact that the estimating functions for the nuisance parameters
are readily obtained as gradients of the DR influence function
under fixed nuisance parameters, but also through the fact that
the asymptotic variance calculation of the resulting DR estima-
tor (and corresponding score tests) can ignore estimation of the
nuisance parameters. While the proposed approach is expected
to yield estimators with reasonable precision, it does not guaran-
tee minimal variance, unlike other proposals in certain settings
(Cao, Tsiatis, and Davidian 2009). In Appendix I of the online
supplemental material, we show, however, that the requirement
of minimal variance generally leads to complex constrained op-
timization problems (unless for instance when the PS model is
assumed to be correctly specified).

The proposed approach may more generally lend itself better
to small-sample inference. For instance, suppose that interest
lies in the marginal causal effect T = E{Y (1) — Y (0)}. Because
the proposed estimation strategy does not require acknowledg-
ing the uncertainty of the estimated nuisance parameters (up to
first order), we foresee that it may potentially lend itself bet-
ter to randomization inference (e.g., permutation tests). How
such randomization inference could be accomplished and how
it performs in small to large samples will be studied in future
work.

A limitation of the bias-reduced DR estimator is that it
demands working models of the same dimension. This can
in principle be remedied by enlarging the working models
with clever choices of covariates until they are of the same
dimension. For example, reconsider the DR estimator (1) from
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Section 2 with working models m(X; 8) = i + B X + B3 X?
and 7(X;y) =1y +»»X for a one-dimensional covariate
X. Taking the gradients of the influence function would
lead to two estimating functions for B = (81, B2, 83)7 and
three estimating functions for y = (y;, 2)". An additional
estimating function for B can be obtained by using the
extended PS model 7 (X;y) = expit{y; + 2 X + 3¢ (X)} for
a cleverly chosen covariate ¢(X). The proposal then amounts
to solving the estimating equations £, {d¢(Z; io, ¥, B)/3B} =
E,[{1 —R/n(X;y), X, X>»"1=0 for y and E,{d
&(Z; o, ¥, By} = E(A[{1 — n(X; )} /mn(X; )Y —m
(X;BHL, X, ¢(X)}T) =0 for B. A clever choice for ¢(X)
is 1/{1 —m(X;pgr)}- Indeed, this choice ensures that
E,[A{Y —m(X;BBR)}/Tr(X;f/BR)}] =0, making the bias-
reduced DR estimator fipr(P g, ﬁBR) equal to a substitution
estimator E,{m(X; ﬁBR)}. An alternative possibility to cope
with nuisance parameters of different dimensions would be to
apply the procedure in the direction of just a single nuisance
parameter, rather than both.

SUPPLEMENTAL MATERIAL

This file (Appendices A-L) contains proofs, discussions on
regularity conditions, extensions, and comments to certain sec-
tions, two R-functions, additional simulation results and sup-
porting figures for the data-analysis.

[Received February 2012. Revised July 2014.]
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